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Abstract
Increasing electric vehicle (EV) shares and fuel economy pose challenges to a fuel tax-based transportation funding scheme.
This paper evaluates such fuel tax revenue impacts using Virginia as a case study. First, a bivariate count model is developed
using vehicle registration data in 132 counties from 2012 to 2016. Model results indicate strong correlation between pres-
ence of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) on a county basis. Counties with higher
percent of males are associated with higher BEV (but not PHEV) counts. In contrast, higher average commute time is pre-
dicted to increase the number of PHEVs in each county, but not BEVs. Greater population density, population over 65, popu-
lation with graduate degrees, and household size are found to increase PHEV and BEV counts, whereas more households
with children is associated with fewer EVs. The analysis forecasts 0.6–10% statewide EV adoption by 2025, with an adoption
rate of 2.4% in the most likely scenario. Nine scenarios, combining different predictions of EV adoption and fuel economy
improvement, project 2025 statewide fuel tax revenue to decrease by 5–19%, relative to 2016 receipts. Furthermore, model
results suggest that, on average, a light-duty vehicle in a rural area will pay 28% more in fuel taxes than its urban counterpart
by 2025. The framework proposed here provides a reference for other regions to conduct similar analysis using public agency
data in the vehicle electrification era.

Fuel tax revenue is the primary source of federal trans-
portation funding for road infrastructure construction
and maintenance in the United States. According to U.S.
Congressional Budget Office estimates, Highway Trust
Fund (HTF) tax revenue totaled $41billion in fiscal year
2017, with fuel tax revenue ($35.3 billion) accounting for
86% of the total. However, fuel tax revenue is unsustain-
able in nature as a result of failure to adjust to inflation
and vehicle fuel efficiency improvement. Since 2008, U.S.
Congress has sustained highway spending by transferring
$143 billion of general revenues to the HTF, including
$70 billion in 2016 (1).

The current fuel tax revenue shortfall will be exacer-
bated with the adoption of electric vehicles (EVs), mak-
ing it more difficult for the HTF to remain solvent. In
2017, EV stock in the U.S. exceeded 760,000, a 36%
increase from 2016. In addition, EV sales market pene-
tration crossed the 1% mark in 2017. Unlike internal
combustion engine vehicles (ICEVs), EVs do not refuel
with gasoline and thus do not contribute to fuel tax reve-
nue. Researchers have estimated that EVs will account
for about 60% of new car sales in US by 2040 (2). It is

expected that the HTF will suffer great deficit in the mass
vehicle electrification era if the current gas tax funding
structure remains.

In addition to the financial solvency issues, fuel tax
disproportionately affects rural populations, raising
questions of geographic equity (3). U.S. Department of
Transportation’s National Household Travel Survey
shows that rural households spend more on fuel than
their urban or suburban counterparts, because of the
lower vehicle fuel efficiency and greater vehicle miles tra-
veled (VMT) (4). Despite faster rates of EV adoption in
urban areas (5), no study has yet quantified the impact
of EV adoption on fuel tax geographic equity.

1Department of Engineering Systems and Environment, University of

Virginia, Charlottesville, VA
2Department of Urban and Environmental Planning, University of Virginia,

Charlottesville, VA
3Department of Civil and Environmental Engineering, Pennsylvania State

University, University Park, PA

Corresponding Author:

Address correspondence to T. Donna Chen: tdchen@virginia.edu

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0361198119844973
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0361198119844973&domain=pdf&date_stamp=2019-05-09


Motivated by these trends, this paper uses the state of
Virginia as a case study to examine: (1) the impact of
socio-demographic, travel behavior, and charging infra-
structure characteristics on EV ownership on a county
level; (2) the possible ranges of future fuel tax revenue
impacts resulting from EV adoption trends and fuel
economy improvement; (3) spatial distribution of pro-
jected future fuel tax revenue contribution per vehicle on
a county basis.

Literature Review

This literature review includes two parts which are rele-
vant to this study. The first part reviews prior work on
EV adoption at different geographic scales. In the second
part, previous studies on fuel tax revenue impacts of EV
adoption are summarized.

There exists an extensive body of literature on EV
adoption, and each study can be categorized into one of
three geographic scales: individual/household, national/
state, and zonal. For the individual/household-level stud-
ies, discrete choice models are typically used to explore
determinants of EV purchase decisions. These disaggre-
gate studies examine the impacts of respondent-related
variables (e.g., socio-demographics) and vehicle choice
alternative-related variables including financial attributes
(fuel cost, purchase cost, etc.), technical attributes (all-
electric range, emissions, charging time, etc.), charging
infrastructure attributes (charging station availability),
and incentive policy attributes (one-time cash incentives,
free parking, access to high-occupancy vehicle [HOV]
lanes, etc.). Because of the varied study areas, data collec-
tion periods, experiment designs, and model specifica-
tions, the effects of socio-demographics on EV preference
are mixed. It is so far unclear whether the effects of age,
gender, education attainment, income, and household
composition are negative, positive, or significant at all, as
there is supporting evidence for all claims (6). For exam-
ple, the effect of gender variable (male) on EV adoption
is found to be significantly positive by Anable et al. (7),
Egbue and Long (8), Carley et al. (9), Plötz et al. (10),
and Kim et al. (11), significantly negative by Jensen et al.
(12), and insignificant by Mohamed et al. (13) and
Kurani (14). The impacts of financial, technical, and
charging infrastructure attributes on EV adoption are
generally found to be significant (6). As for incentive pol-
icy attributes, the one-time cash incentives are generally
effective (15–17). However, the effects of other incentive
policies are controversial. For example, the effectiveness
of free parking on EV adoption is found to be significant
by Ferguson et al. (16), whereas Hess et al. (17), Hoen
and Koetse (18), Potoglou and Kanaroglou (19), and
Qian and Soopramanien (20) report no significance.
Because of limited real-world EV purchase behavior

data, these disaggregate studies are often conducted using
stated preference (SP) survey data, with the obvious lim-

itation of the inherent biases in SP data.
Another group of EV adoption literature focuses on

aggregate predictions at an international/national/state

level using historical EV sales or vehicle registration

data. Some recent examples include Sierzchula et al. (21),

Jin et al. (22), Narassimhan and Johnson (23), Lutsey

et al. (24), Vergis and Chen (25, 26), and Soltani-Sobh,

et al. (27). Such highly aggregate studies ignore spatial

variation in EV adoption and cannot decipher the effects

of zonal characteristics. In contrast, zone-level EV own-

ership models are more appropriate for local analysis,

but these previous studies are limited in number. For

example, Dimatulac and Maoh (28), Chen et al. (29),

and Bansal et al. (30) investigate the spatial distribution

characteristics of (non-plug-in) hybrid electric vehicles

(HEVs) on a census tract basis using cross-sectional

data. Local level analysis for plug-in EVs is even more

limited. Zhou et al. develop multiple linear regression

models to examine factors which affect battery electric

vehicle (BEV) and plug-in hybrid electric vehicle (PHEV)

adoption rates separately on a county basis in the U.S.

using 2014 vehicle registration data (31). Results show

that income, extreme temperature, vehicle incentives,

and HOV lane subsidies affect both BEV and PHEV

adoption. Interestingly, the authors find that charging

infrastructure is statistically correlated with PHEV adop-

tion, but not with BEV adoption. There are several lim-

itations to this study: (1) univariate models developed in

this study fail to allow for the commonalities between

PHEV and BEV adoption patterns at a zonal level; (2)

the cross-sectional data used in this paper fail to account

for temporal effects of EV adoption; (3) this study

focuses only on counties in metropolitan areas and

excludes rural areas.
With the increasing rate of EV adoption, policy-

makers are interested in the subsequent impacts on fuel
tax revenue. A few studies have examined fuel tax reve-
nue impacts of EV adoption on a regional or national
scale. Vasudevan and Nambisan evaluate the impacts of
Corporate Average Fuel Economy (CAFE) regulations
and HEV and alternative fuel vehicles (AFV) adoption
on transportation funding at the U.S. national level (32).
The New Sales Survivability model, along with new vehi-
cle sales data and vehicle survivability data from 1980 to
2005, are used to estimate revenue projections for 2010–
2025. Assuming that HEV and AFV sales will increase
annually by 20% from base year 2009, results predict
federal fuel tax revenues to decrease by 37% by 2025
(relative to 2009). Jenn et al. assess the effects of EV
adoption on revenues at both individual state and U.S.
national level (33). First, lifetime tax revenue of represen-
tative vehicle models of ICEVs and EVs are calculated

Jia et al 549



on a marginal basis. Then, aggregate funding deficits
resulting from EV adoption are estimated based on EV
sales predictions from the U.S. Energy Information
Administration. Results show that by 2025, total annual
revenue generation decreases by $200 to $900million
depending on the EV adoption scenario. Chamberlin
et al. predict statewide fuel tax revenue in Utah by 2040
(34). Three EV market penetration rates are assumed:
less than 1%, 21%, and 32% of new vehicle sales. The
Energy and Emissions Policy Analysis Tool from
Federal Highway Administration (FHWA) is used to
estimate the VMT and the resulting fuel consumption
and fuel tax revenues. This study concludes that 2040
fuel tax revenue will decline by 40% from 2010 under the
most likely EV market penetration scenario. Schleith
examined the effects of EVs on a national scale by
assuming three scenarios of EV sales growth rates from
2016: 5%, 10%, and 15% (35). Calculations for EV sales
growth rates of 10% show a 5% reduction in the HTF in
about 20 years. Although these previous studies have
examined the fuel tax revenue impacts of EV adoption
under various scenarios, they have two major limitations:
(1) EV adoption rates are simply assumed based on gen-
eral trends without rigorous econometric analysis; (2)
fuel tax revenue results are highly aggregated on a
national/state basis, failing to account for spatial differ-
ences on smaller geographic scales where transportation
investment decisions are also made (city, county, metro-
politan area, etc.).

To the authors’ knowledge, this paper is the first to
integrate the zonal (county-level) EV ownership model
into the estimation of fuel tax revenue impacts. This
study fills the EV adoption literature gaps by developing
a county-level bivariate EV ownership model using panel
data, allowing for the correlation between PHEV and
BEV adoption. Though the study uses Virginia-based
data, many other regions face the same questions regard-
ing sustainable transportation funding as EV market
penetration grows. This case study provides a reference
framework for other regions to conduct similar analyses
on fuel tax revenue impacts in the vehicle electrification
era using common state and national datasets.

Methodology and Data

In this paper, the fuel tax revenue impacts of EV adop-
tion and fuel economy improvement in 2025 in Virginia
are estimated on a county basis, as shown in the metho-
dology framework in Figure 1. First, based on multiple
statewide data sources, a bivariate EV ownership model
is developed to predict number of BEVs and PHEVs in
each county. Second, different levels of ICEVs’ fleetwide
average fuel economy are predicted considering the
uncertainty of fuel economy improvements. Third, nine

scenarios are developed by combing different EV adop-
tion levels and fuel economy improvement levels. Fuel
tax revenue impacts are then evaluated for each scenario.

EV Ownership Model

The data used for EV ownership model development are
collected from Virginia Department of Motor Vehicle
(DMV), U.S. Census Bureau, and Alternative Fuels
Data Center (AFDC) in the U.S. Department of Energy.
The DMV dataset records make, model, model year, fuel
type, zipcode, and county for each registered vehicle in
Virginia in calendar years 2012, 2014, 2015, and 2016.
The response variables (BEV and PHEV counts in each
year on a county basis) are calculated based on the
DMV dataset. Most predictor variables are collected
from the U.S. Census Bureau during the same years as
the DMV dataset, including county demographics (i.e.,
total population, age distribution, sex ratio, etc.), house-
hold attributes (i.e., household size, income, etc.), and
commute characteristics (i.e., commute time, mode, etc.).
In addition to census data, AFDC data are included in
the predictor variables to describe the EV charging infra-
structure in each county: the dataset contains specific
information for each public charging station in the U.S.,
including location, opening date, number of charging
ports, and so forth. Finally, a panel dataset with 520
observations (130 counties with 4 years of data for each
county) is obtained by merging datasets from various
sources above. Of the total of 520 records, 80% (416
observations) are randomly selected for parameters esti-
mation, and the remainder 20% of sample are used for
model validation. All the response variables and predic-
tor variables are aggregated on a county basis annually,
with summary statistics shown in Table 1.

The county-level EV ownership model is specified
using a bivariate, lognormal Poisson, linear mixed effects

Figure 1. Methodology framework.
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model framework. First, the bivariate approach allows
the modeling of two response variables jointly, aiming to
describe correlation between the number of BEVs and
PHEVs per county. Correlation between the two
response variables is captured by the covariance coeffi-
cients in the variance–covariance matrices of the random
effects and residuals (see Su, Se below). Second, the log-
normal Poisson process is applied here to allow for
observation-level dispersion (see e below). By an expo-
nential link function, the expected values of responses
variables are modeled as a linear function of a set of pre-
dictor variables (see Xb below). Third, the mixed effects
model structure includes not only the fixed effects, but
also the random terms to capture county-specific effects
(see u below). The random terms allow for the correlation
between observations in the same county. Specifically,
the model is set up as Equation 1:

E(Y )= exp (X b+ Zu+ e) ð1Þ

Y : matrix with counts per observation and per
response variable (422 3 2)

X : fixed effects design matrix (including intercept;
422 3 ½#FixedPredictors+ 1�)

b: fixed effects coefficients (including intercept,
½#FixedPredictors+ 1�3 2)

Z: random effects design matrix (422 3 132)
u: county random effects (132 3 2)

e: residuals for random observation-level dispersion
(422 3 2)

The random effects u and residuals e are assumed to
follow multivariate normal distribution, as shown in
Equation 2:

u;N (0,Su)

e;N (0,Se)

Su =
s2

u, bev su, bev&phev

su, bev&phev s2
u, phev

 !

Se =
s2

e, bev se, bev&phev

se, bev&phev s2
e, phev

 !
ð2Þ

For Su, the diagonal elements are the variance in con-
sistent ‘‘county’’ effects for BEV and PHEV counts,
respectively. The off-diagonal elements are the covar-
iance between these effects on the two response variables.
For Se, the diagonal elements are the residual variance
for BEV and PHEV counts, respectively. The off-
diagonal elements are the covariance between these resi-
dual variances on the two response variables. Model
parameters in b, Su, Se were estimated using Bayesian
Markov Chain Monte Carlo (MCMC) sampling tech-
nique, as implemented in the MCMCglmm package (36)
in R.

Table 1. Summary Statistics of Model Variables at the County Level (N = 520)

Variable Mean Median SD Min. Max.

Response variables
Number of battery electric vehicles (BEVs) 9.03 1.00 44.10 0.00 770.00
Number of plug-in hybrid electric vehicles (PHEVs) 8.49 1.00 35.64 0.00 545.00

Demographics
Total population 62,209 25,638 121,381 2,230 1,132,887
Population density (# of people/square mile) 856 101 1607 5.37 10,078
Percent of population over 65 years of age 16.81 17.25 4.93 5.80 36.10
Sex ratio (number of males per 100 females) 98.03 96.30 14.09 59.60 217.70
Percent of population with graduate degree 9.75 7.60 6.85 2.70 44.40

Household
Median household income ($) 53,420 48,239 19,615 24,059 125,672
Percent of households with income higher than $100K 20.35 16.40 12.40 4.80 63.00

Percent of households with income higher than $150K 8.04 5.20 7.70 0.00 39.50
Percent of households with 1+ people \18 years old 29.61 29.15 5.73 14.80 49.20
Percent of households with 1+ people ø 60 years old 40.98 42.00 8.16 21.50 70.00
Average household size 2.49 2.47 0.23 1.75 3.37

Commute
Average commute time (min) 27.36 26.80 6.34 14.50 42.70
Percent of workers who use public transit for commute 1.72 0.55 3.71 0.00 27.50

Charging infrastructure
Total number of charging ports 2.65 0.00 8.92 0.00 118.00
Charging port density (#/square mile) 0.04 0.00 0.22 0.00 3.97

Note: SD = standard deviation; Min. = minimum; Max. = maximum.
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EV Count Prediction

To predict number of BEVs and PHEVs by county in
2025, projections on predictor variables from the EV
ownership model are needed. First, demographics projec-
tions are cited directly from the Weldon Cooper Center
for Public Service (37) which forecasts the Virginia demo-
graphics on a county basis from 2020 to 2040. Second,
the household and commute variables are projected from
historical trendlines between 2009 and 2016 based on
census data. Third, the charging infrastructure predic-
tions are made based on charging infrastructure growth
patterns in California (based on the AFDC dataset), rela-
tive to current charging infrastructure supply in Virginia,
as detailed in the Results section.

Fuel Economy Improvement

To account for uncertainty of future fuel economy
improvements, three scenarios of fleet average fuel econ-
omy are developed by referencing the historic fuel econ-
omy trendline and proposed CAFE standards up to
2025. Specifically, the data used for future fuel economy
levels of ICEVs include two parts: (1) U.S. EPA’s annual
average fuel economy of new light-duty vehicles from
1975 to 2017 (38); (2) the fuel economy thresholds from
the CAFE standards proposed by the Obama

Administration for model year 2018–2025 light-duty
vehicles. Finally, VMT in each county in 2016 is col-
lected from Virginia Department of Transportation.

Scenario Analysis

Nine potential 2025 scenarios are developed by combin-
ing estimated EV adoption levels and fuel economy
improvement levels. For each 2025 scenario, fuel tax rev-
enue in a county is calculated by Equation 3:

TotalRevenue=Revenueicev +Revenuephev +Revenuebev

Revenueicev =Numicev 3 VMTicev=mpgicev 3 TaxRate

Revenuephev =Numphev 3 VMTphev

3 (1� UtilityFactor)=mpgphev 3 TaxRate

Revenuebev =Numbev 3 UseFeebev ð3Þ

where,
Numicev refers to the number of ICEVs, calculated by

subtracting predicted number of BEVs (Numbev) and

number of PHEVs (Numphev) from total vehicle number
in the county. According to 2006 to 2016 DMV vehicle
registration data, more than 95% counties show less
than +/–5% change in total vehicle count. Thus, this
paper assumes the total vehicle count in 2025 for each
county remains the same as the baseline year 2016, for
simplicity.

mpgicev, mpgphev are the fuel economy of ICEV and
PHEV, respectively, in 2025.

TaxRate refers to gas tax rate, which is the sum of
current state gas tax ($ 0.162/Gal) and federal gas tax
($ 0.184/Gal).

UtilityFactor refers to the fraction of total VMT driven
in electric mode for PHEVs. The utility factor of the 2017
Chevrolet Volt (0.76) is used here as this model shows the
highest adoption rate among all PHEVs in Virginia.

UseFeebev refers to the annual BEV use fee ($64) which
is effective as of 2014 in Virginia. PHEVs currently do
not incur an annual fee.

Lastly, VMTicev, VMTphev are the post-rebound average
ICEV and PHEV’s annual VMTs, respectively, in 2025,
as calculated in the Equations 4 and 5. The rebound
effects of VMT is incorporated here as a result of
increased fuel efficiency (and thus decreased fuel cost per
mile) in 2025. The ranges of elasticities of VMT
with espect to fuel cost are collected from previous
literature:

VMT2025, icev =VMT2016=(1+ elasticity 3 (
FuelCost2016 � FuelCost2025, icev

FuelCost2025, icev
)) ð4Þ

VMT2025, phev =VMT2016=(1+ elasticity 3 (
FuelCost2016 � FuelCost2025, phev

FuelCost2025, phev
)) ð5Þ

where VMT2016 and FuelCost2016 are the average ICEV’s
VMT and ICEV’s fuel cost in baseline year 2016.
Parameters used to calculate fuel cost include current
fuel price ($2.60/Gal), electricity price ($ 0.1108/kW-h),
and energy efficiency of PHEV on electric mode
(31 kW-h/100mi).

Results

EV Ownership Model

Table 2 shows the parameter estimates of EV ownership
model. Here, population of each county is used as an
exposure term, and socio-demographic, travel behavior,
and charging infrastructure characteristics as predictor
variables. The positive covariance coefficient in Su sug-
gests that counties that have more registered BEVs con-
sistently have more registered PHEVs. The correlation
coefficient is 0.86 (calculated by su, bev&phev=

(
ffiffiffiffiffiffiffiffiffiffiffiffi
s2

u, bev

q
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

u, phev

q
)) for BEV and PHEV counts, which

demonstrates that correlation between these two
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response variables should be considered in the analysis.

Similarly, the positive covariance coefficient in Se indi-
cates that in specific years that a county registers many
BEVs, it also registers many PHEVs.

Most predictor variables show consistent effects across
both BEV and PHEV ownership models because of the
commonalities between the two vehicle powertrain tech-
nologies. Population density is a statistically significant
predictor for both BEV and PHEV models, though the
parameter coefficient for PHEV model is lower than
BEV. In a consumer preference study in Canada,
Ferguson et al. found that BEV-orientation is strongly
urban whereas a PHEV orientation is more moderately
urban and is also oriented to suburban areas (16). In rural
areas where population density is low, residents prefer
larger vehicles such as pickups and SUVs (16). The EV
market for such body types is immature from both the
supply and demand perspectives at this point, with BEVs
exhibiting even more limited model types than PHEVs.

Model results predict counties with older populations
to have more EVs. For a one standard deviation increase
in the percent of population over 65 years of age, the
number of BEVs and PHEVs in the county are predicted
to increase by 324% and 196%, respectively, holding all
other variables at mean values. This result is contrary to
many disaggregate-level EV preference studies (see, for
example, 9, 16, 39, 40) which find that young or middle-
aged consumers are more likely to show interest in EVs.
The authors note that these disaggregate EV studies are
mainly based on consumers’ SP, which may not fully
represent real market behavior. On the other hand, a
revealed preference study of EV owners in Maryland
(41) supports this finding that on average, EV owners
tend to be older than ICEV owners.

Controlling for all other variables, counties with
higher percentage of residents with graduate degrees are
associated with more EVs, which is consistent with
Hidrue et al. (39), Egbue and Long (8), Ferguson et al.
(16), and so forth, all individual/household-level studies
that found a positive relationship between increased edu-
cational attainment and preference for EVs. When
income and education variables are incorporated into
the EV ownership model simultaneously, education-
related variables were found to be statistically significant
whereas income was not (because of high correlation
between the two variables). Thus, only education-related
variables are included in the final model specification
here.

A greater percentage of households with children
(under 18) exerts a negative effect on predicted county-
level EV counts. For an one standard deviation increase
in percent of households with children, the number of
BEVs and PHEVs are predicted to decrease by 37% and
34%, respectively, holding all other variables at mean

values. This finding is supported by Brownstone and
Fang (42), which found higher ownership rates of vans,
SUVs, and pick-up trucks in California households with
young children. As of 2016, consumers considering large
vehicles have far fewer choices when seeking an EV ver-
sus an ICEV.

Increase in average household size is positively corre-
lated with number of EVs in a county. For an one stan-
dard deviation increase in average household size, the
BEV and PHEV counts in the county are predicted to
increase by 197% and 149%, respectively, holding all
other variables at mean values. This result is consistent
with Plötz et al. (10), who report that multimember fami-
lies are more likely to be EV adopters. Empirical evi-
dence for early adopters from Norway shows that most
consumers who purchase EVs buy them as an addition
to their household’s car fleet (43). Larger households
tend to be multi-car households, and may be more likely
to adopt EVs than single-car households. In this sense,
multi-car households are less likely to be limited by the
driving range of EVs as they have alternative vehicles.
However, Hidrue et al. report no significant relationship
between multi-car households and EV preference (39).

Public transit commute share appears to have a nega-
tive influence on EV ownership in these models. This is
possibly because counties with higher public transit share
may represent counties with higher share of low-income
households (as income variables are not included in the
final model specification). The EVs’ purchase price pre-
mium (over ICEVs) is a barrier for adoption among low-
income households. Another possible explanation is that
given the same average household size, a household in a
high public transit access county may own fewer vehicles
than a household in a low transit access county, which
goes back to the previous discussion on multi-car house-
holds being more open to adopting EVs (when compared
with single-car households).

The model predicts higher public charging port den-
sity to increase both BEV and PHEV counts in a county,
with the coefficient for BEV higher than that for PHEV,
indicating that BEV ownership is more sensitive to
charging infrastructure availability than PHEV. This
result seems logical, as BEVs are solely powered by elec-
tricity, higher availability of public charging facilities can
help travelers overcome the ‘‘range anxiety’’ barrier to
EV adoption. For one standard deviation increase in the
charging port density, the BEV and PHEV counts in the
county are predicted to increase by 18% and 14%,
respectively, holding all other variables at mean values.
Note that the marginal effect of one standard deviation
increase in charging port density is much lower than the
marginal effects of socio-demographic variables, owing
to the limited charging port density in Virginia with cor-
respondingly low standard deviation.
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However, two predictor variables, sex ratio and aver-
age commute time, show mixed effects across BEV and
PHEV adoption. Counties with higher percent of males
are associated with higher numbers of BEVs, but not
PHEVs. Although many disaggregate EV preference
studies (7–10) report that males are more likely to be
interested in EVs, some studies (13, 14) argue that there
is no evidence of gender impact on EV adoption inten-
tion. Interestingly, higher average commute time
increases the number of predicted PHEVs in each
county, but not BEVs. For PHEVs, this can be explained
by the energy cost savings associated with powering the
vehicle with electricity rather than gasoline. Commute
time is a proxy for commute distance. Commuters travel-
ing longer distances pay more for fuel and have greater
savings potential from owning PHEVs. Lane shows that
such economic benefit contributes to consumers’ interest
in purchasing or leasing PHEVs (44). But for BEVs, the
range anxiety, frequently cited in the literature as a key
barrier in EV adoption (8), offsets the fuel savings bene-
fits, potentially making the commute time a statistically
insignificant variable for county-level BEV adoption.

To validate the EV ownership model, prediction per-
formances are compared across four models: (I) bivariate
count model (coefficients showed in Table 2); (II) bivari-
ate count model with spatial lagged charging port den-
sity component (binary weight matrix); (III) bivariate
count model with spatial lagged charging port density
component (1/distance weight matrix); (IV) univariate
count model. Model II and model III with spatial lagged
X component aim to capture the ‘‘neighbor effects’’ in
EV adoption (shown at a census block level in Chen
et al. (29)), assuming that number of EVs in a county is
affected by charging port density in its neighboring
counties. Mean average error (MAE) and root mean
square error (RMSE) are used to measure the differences
between predicted and observed EV count. As shown in
the last part in Table 2, the bivariate count model out-
performs the univariate count models. Considering the
simplicity, model I (without spatially lagged X compo-
nents) is used for EV number prediction in the fuel tax
revenue impacts portion of this analysis. The reason that
incorporating neighbor effects into the county-basis
model does not improve model prediction performance
is possibly because of the modifiable area unit problem
(45) when aggregating household-based vehicle choice
phenomena into county districts, a potential limitation
to zone-level count modeling.

2025 EV Ownership Prediction Levels

Based on demographics projections from the Weldon
Cooper Center, predictor variables (total population,
population density, percent of population over 65 years

of age, and sex ratio) are cited as the input variables in
EV ownership model to predict 2025 EV counts by
county. Then, the other predictor variables (percent of
population with graduate degrees, percent of households
with children, average household size, average commute
time, and percent of workers who use public transit for
commute) are predicted based on historical trends from
2009 to 2016, using census data. The five independent
variables show a linear change (increase or decrease) in
the past 8 years, and a linear trendline is fitted to predict
these independent variables through 2025 (with R2 values
ranging from 0.89 to 0.99).

As there is limited charging infrastructure in Virginia
currently, it is difficult to predict charging port density
based on each county’s own historical trendline. Thus,
the charging port density in Virginia in 2025 is predicted
by referencing charging infrastructure deployment tren-
dlines in California. First, the counties in California and
Virginia are categorized into four quantiles based on
charging port density. Then, the mean charging port den-
sity of each quantile is calculated for the comparison
between California and Virginia. As shown in Figure 2,
charging port density in Virginia appears to be roughly 4
years behind that in California. Specifically, the charging
port density in Virginia in 2017 is close to California’s
2013 level. To capture the uncertainty in future charging
infrastructure investment in Virginia, three scenarios are
examined in this study. One scenario assumes the charg-
ing infrastructure development in Virginia follows the
same rate as California, thus the charging port density in
Virginia in 2025 will be close to California’s projected
2021 level. The other two scenarios capture a conserva-
tive scenario (no further investment in charging infra-
structure, density remains the same as 2017 Virginia
levels) and a more aggressive case (Virginia catches up to

Figure 2. A comparison of charging port density between
California and Virginia.
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California’s projected 2025 charging infrastructure level).
Lastly, California’s projected charging port densities in
2021 and 2025 (by quantile) are obtained by fitting a
two-order polynomial function based on California’s his-
toric trendline (with R2 values ranging from 0.98 to 0.99).

After inputting all the predictor variables into the EV
ownership model, the total numbers of BEVs and
PHEVs for each county in Virginia in 2025 are predicted:
(1) for the conservative scenario (at 2017 Virginia charg-
ing infrastructure levels), the model estimates 45,364 EVs
total statewide, accounting for 0.64% of total vehicle
fleet; (2) for the most likely scenario following
California’s projected 2021 charging infrastructure levels,
the model estimates 166,016 EVs statewide, accounting
for 2.36% of total vehicle fleet; (3) for the most aggres-
sive scenario (charging port densities are the same as
California’s 2025 level), model estimates 721,870 EVs
statewide, accounting for 10.27% of total vehicle fleet.
For comparison, EV Adoption predicts U.S. national
annual EV new sales market share up to 2025 and
Virginia would have about 244,000 EVs in stock in 2025

if the state EV market share follows the national average
(46).

Figure 3a shows the predicted spatial distribution of
EV adoption rates for the most likely scenario (following
California’s projected 2021 charging infrastructure lev-
els) of Virginia counties. Though the EV adoption rates
in most counties in 2025 are predicted to be less than
1%, a few counties show relatively high adoption rates,
and are concentrated in and near large and medium met-
ropolitan areas, such as the Washington DC, Richmond,
Hampton Roads, and Charlottesville metropolitan areas.
Other high EV adoption counties are distributed
along the interstate highways, where many public charg-
ing stations (especially DC fast charging stations) are
deployed.

Fuel Economy Improvement Levels

Figure 4 shows the fleetwide adjusted fuel economy for
light-duty vehicle model year (MY) 1975–2017.
(Adjusted fuel economy values reflect real-world perfor-
mance and are not comparable to automaker standards
compliance levels. Adjusted fuel economy values are
about 20% lower, on average, than unadjusted fuel econ-
omy values that form the fuel economy standard compli-
ance [38].) Given the volatile nature of fuel economy
improvement in the long term, three scenarios of ICEV
fuel economy are developed. The first conservative sce-
nario assumes the fuel economy will remain stagnant
from MY 2017 to 2025. The second (most likely) sce-
nario assumes the fuel economy follows the historic
growth rate since MY2005. The last aggressive scenario
assumes the fuel economy will be in compliance with the
proposed CAFE standards for MY 2017–MY 2025
released in August 2012 by U.S. EPA and NHTSA.

Combining the new vehicles’ fuel economy for each
model year and the vehicle age distribution in each county
in 2016, the fleet average fuel economy for each county in

Figure 3. (a) Projected 2025 Virginia EV adoption rates by county; (b) projected 2025 average ICEV fuel economy by county.

Figure 4. New light-duty vehicle adjusted fuel economy
improvement scenarios.
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Virginia in 2016 can be calculated. Assuming the vehicle
age distribution in 2025 remains the same as in 2016, the
projected fleet average fuel economy for each county in
2025 is shown in Figure 3b for the most likely fuel econ-
omy improvement scenario. It is worth noting the similar-
ity between the 2025 fuel economy spatial distribution and
the predicted distribution of EVs.

Fuel Tax Revenue Impacts Analysis

This section estimates the future fuel tax revenue impacts
in 2025. Following the discussions in the previous sec-
tions, nine scenarios were designed based on three charg-
ing infrastructure investment levels and three future fuel
economy improvement levels. Table 3 shows the defini-
tion of these nine scenarios.

The rebound effects of VMT with respect to fuel cost
is considered for each scenario. In the U.S., the elasticity
of VMT with respect to fuel cost varies greatly depending
on the region and time period. For example, the short-
run elasticities have been estimated to be 20.026 (47),
20.026 to 20.047 (48), 20.12 to 20.17 (49), and 20.15
to 20.2 (50). The long-run elasticities have been esti-
mated to be 20.131 (47), 20.121 to 20.22 (48), 20.21 to
20.3 (49), and 20.24 to 20.34 (51). This study selects
two elasticity thresholds (0 and 20.3) to fully represent
the range of rebound effect uncertainty for the 2025
calculations.

Statewide Fuel Tax Revenue Loss. Figure 5 shows the esti-
mated statewide 2025 fuel tax revenue compared with
2016, with and without taking rebound effects into con-
sideration. As seen in Figure 5, ignoring rebound effects
(elasticity = 0), the scenarios show 7% to 19% fuel tax
revenue loss in 2025 compared with 2016. When consid-
ering a relatively high rebound effect (elasticity = 20.3),
2025 fuel tax revenue is projected to decrease 5% to 16%
compared with 2016 revenue. The total amount of fuel
tax revenue loss ranges from $ 0.11 to $ 0.27 billion (elas-
ticity = 0) and from $ 0.08 to $ 0.23 billion (elasticity =
20.3).

To make up the fuel tax revenue shortfall, gas tax rate
would need to increase to $ 0.363 to $ 0.379/Gal from the
current rate of $ 0.346/Gal. The proposed fuel tax rates
are calculated based on necessary increases to maintain
the same fuel tax per ICEV as 2016 levels, including the
consideration of rebound effects. For the most likely sce-
nario (Scenario 5), a $ 0.368/Gal gas tax is needed, which
is a 6.4% increase from current gas tax rate.

Currently, Virginia imposes a $64 annual use fee for
BEVs. Given an ICEV contributes $218 gas tax annually
in the baseline year 2016, an additional $154 use fee for
BEVs is needed to maintain the same fuel tax revenue
level per vehicle in 2016. Different from BEVs, PHEVs
contribute to fuel tax revenue as they can be powered by
gasoline. Assuming a utility factor of 0.76 (that of the
2017 Chevrolet Volt), a PHEV, on average, contributes
about $28 fuel tax annually. Virginia imposes no use fees
for PHEVs currently, and a $190 use fee would be needed
to maintain the same tax revenue per vehicle level as
2016.

Spatial Distribution of Fuel Tax Revenue Contribution per
Vehicle. Based on the scenario analysis of the revenue loss
for each county, a spatial heat map in Figure 6 shows the

Table 3. Definition of Each Scenario

EV charging
infrastructure

Fuel
economy

Growth stagnant
(stays at Virginia 2017 levels)

Follows likely growth rate
(matches California 2021 levels)

Follows aggressive growth rate
(matches California 2025 levels)

Stagnant since 2017 Scenario 1 Scenario 2 Scenario 3
Linear increase based on

historical trend
Scenario 4 Scenario 5 Scenario 6

Compliant with proposed
CAFE standards

Scenario 7 Scenario 8 Scenario 9

Note: EV = electric vehicle; CAFE = corporate average fuel economy.

Figure 5. Projected 2025 statewide fuel tax revenue (compared
with 2016).
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county-level average fuel tax revenue contribution per
vehicle change from 2016 to 2025 in Scenario 5 (incorpor-
ating full rebound effects). Figure 6 indicates that almost
half of the counties will see more than 6% fuel tax reve-
nue contribution (per vehicle) decrease, with the highest
decrease in James City County (where the average vehi-
cle’s fuel tax contribution will decrease 18% from 2016
to 2025). Furthermore, the change in fuel tax revenue
contribution (per vehicle) shows spatial heterogeneity.
The counties with larger decreases (green counties on the
heat map) are more concentrated in dense metropolitan
regions such as Washington DC, Richmond, Hampton
Roads, and so forth. As also noted in the EV predictions
discussion, these regions are also located along Virginia’s
major transportation corridors. In 2016, FHWA desig-
nated I-64, I-66, I-81, I-85, and I-95 in Virginia as EV
Corridors (52). It is expected that future EV charging
infrastructure investments will be mainly located along
these corridors, further encouraging EV adoption. Thus,
such regions’ already significant fuel tax revenue contri-
bution (per vehicle) decrease may actually be underesti-
mated here.

Next, the fuel tax revenue contribution per vehicle dif-
ference between urban and rural areas is examined. The
U.S. Census Bureau identifies all urban and rural areas
and records the corresponding urban and rural popula-
tion. Among the 132 counties in Virginia, 19 counties
belong to a Census-defined urban area, and 29 counties
fall into a Census-defined rural area. However, the
remaining 84 counties include both Census-defined
urban areas and rural areas. Thus, this study simply cate-
gorizes the 132 counties into two categories: (1) counties
with more than 50% urban population are classified as
urban; (2) counties with more than 50% rural population
are classified as rural. On average, a vehicle in a rural
county in 2016 pays $230 gas tax annually, 22% higher
than a vehicle in an urban county. Under Scenario 5,

such fuel tax revenue contribution (per vehicle) gap is
predicted to increase to 28% in 2025. Such results point
to the likely increasing geographic inequity of gas tax
between urban and rural areas as EV adoption and fleet
fuel economy increase.

Conclusion

This paper integrates a county-level EV ownership model
to a statewide fuel tax revenue impacts evaluation, using
Virginia as a case study. First, using panel vehicle regis-
tration data in 132 counties from 2012 to 2016, a bivari-
ate EV count model is developed to predict BEV and
PHEV counts in each county in Virginia in 2025. The
model demonstrates a high correlation between BEV and
PHEV counts, as counties that have more registered
BEVs consistently have more PHEVs. Most covariates
show consistent effects across both BEV and PHEV
counts. For example, greater population density, percent
of population over 65 years of age, percent of population
with graduate degree, and average household size are
predicted to increase both BEV and PHEV counts in a
county, whereas higher percent of households with one
or more people under 18 are predicted to decrease EV
counts. However, two predictor variables show mixed
effects across BEV and PHEV adoption. Greater percent
of males in a county is associated with higher BEV
counts, but not PHEV counts. In contrast, counties with
higher average commute time are associated with higher
PHEV counts, but not BEV counts.

The EV ownership model predicts a 0.6–10% state-
wide EV adoption rate in 2025 depending on future
charging infrastructure investment, with a 2.4% adoption
rate under the most likely scenario. Such a large range
across predictions demonstrates the importance of charg-
ing infrastructure investment in promoting EV adoption.
These three EV adoption rates are combined with three
levels of future fuel economy improvement to develop
nine scenarios to evaluate fuel tax revenue impacts in
2025.

Model results anticipate 2025 statewide fuel tax reve-
nue to decrease 7–19% compared with 2016. When
incorporating a high VMT rebound effect resulting from
increased fuel efficiency, the fuel tax revenue loss is
slightly relieved: a 5–16% decrease from 2016. To make
up the 5–16% fuel tax revenue loss, increasing the gas
tax rate and imposing EV use fee are two potential mea-
sures. To maintain 2016 fuel tax revenue levels, models
estimate the gas tax rate would need to increase to $
0.363–$ 0.379 per gallon from the current rate of $ 0.346
per gallon, and a $218 BEV annual use fee (compared
with the current $64 BEV annual use fee), and a $190
PHEV use fee (compared with the current $ 0 PHEV
annual use fee) would be required. These calculations are

Figure 6. Heat map of fuel tax revenue contribution per vehicle
change (from 2016 to 2025).
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purely based on fuel tax revenue, and do not consider
the greater external costs associated with ICEV use com-
pared with EV use (e.g., emissions, noise, etc.).

In addition to the statewide fuel tax revenue impacts,
this paper also examines spatial distribution of fuel tax
revenue contribution per vehicle. Though per vehicle fuel
tax revenue contribution is predicted to decline in all coun-
ties, the decrease is more significant in urban areas than in
rural areas. Urban areas are predicted to have higher EV
adoption rates and better average fuel economy among
ICEVs, resulting in an overall greater fuel tax revenue con-
tribution decrease. For the most likely scenario, an aver-
age light-duty vehicle in rural areas in 2025 would pay
28% more in fuel taxes compared with its urban counter-
part (compared with a 22% difference in 2016).

Many other regions face the same questions regarding
sustainable transportation funding in the vehicle electrifi-
cation era. The methodology framework proposed in this
study can provide a reference for other regions to con-
duct similar analyses on future fuel tax revenue impacts.
However, there are several limitations with this study.
First, fuel price is not included in the EV ownership mod-
el’s set of covariates. As a result of the county-annual
analysis unit in this study, annually averaged fuel price
offsets the volatile nature of short-run price fluctuations.
Second, the EV ownership model is developed using data
from 2012 to 2016 in which charging infrastructure levels
are relatively low. The authors note the limitation of
using such a model to project EV counts for significantly
higher charging infrastructure levels, though predictions
in this paper are limited to 2025. Third, the average vehi-
cle age in Virginia saw an increase from 9 to 11 years old
from 2006 to 2014, and then stayed relatively stable at
11 years since 2014. For simplicity, this study assumes the
vehicle age distribution in each county remains the same
as in 2016. Future work should examine the specific vehi-
cle age distribution pattern at each county to yield more
accurate predictions. Lastly, although the scope of this
paper focuses on fuel tax revenue, the authors note that
transportation funding comes from many other sources
(vehicle registration fees, vehicle property taxes, local
option transportation taxes, etc.), though these sources
are not directly related to EV adoption. Though this
paper discusses several measures to fill the predicted
shortfall in fuel tax revenue, they do not address more
complicated issues with transportation financing: an
increase in gas tax rate needs to constantly adjust to
future fuel economy improvement, whereas a flat EV use
fee fails to capture vehicle use intensity. Alternative
transportation financing mechanisms such as VMT-
based fees may be more appropriate solutions to capture
use intensity for both ICEVs and EVs, but the fee struc-
ture associated with such a policy is beyond the scope of
this paper.
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